

Note

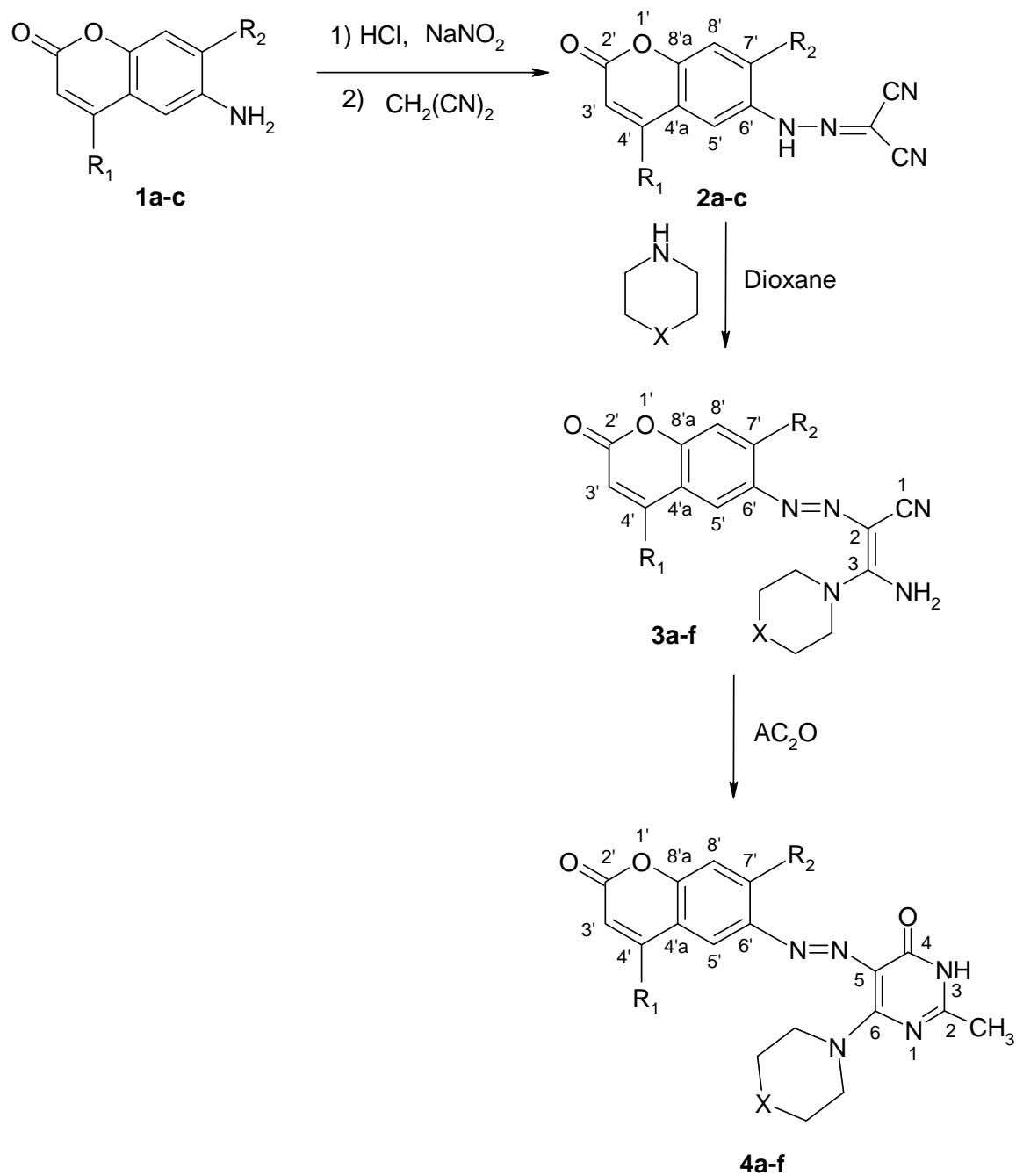
Synthesis and antimicrobial screening of 5-(4,7-dimethyl-2-oxo-2H-benzopyran-6-ylazo)-2-methyl-6-morpholin-4-yl-2,3-dihydro-3H-pyrimidin-4-one and 5-(4,7-dimethyl-2-oxo-2H-benzopyran-6-ylazo)-2-methyl-6-piperidin-1-yl-2,3-dihydro-3H-pyrimidin-4-one

Vinata V Mulwad* & Sagar A Mayekar

Department of Chemistry, The Institute of Science, 15, Madam Cama Road, Mumbai 400 032, India.
E-mail: vinata_mulwad@hotmail.com

Received 28 September 2006; revised (accepted) 19 June 2007

The coupling reaction of the diazonium solution of the 6-aminocoumarins (**1a-c**) with malononitrile affords the corresponding 2-[(4,7-dimethyl-2-oxo-2H-benzopyran-6-yl)-hydrazone]-malononitrile (**2a-c**) which on refluxing with morpholine and piperidine separately yields the corresponding 3-amino-2-(4,7-dimethyl-2-oxo-2H-benzopyran-6-ylazo)-3-morpholin-4-yl-acrylonitrile (**3a-c**) and 3-amino-2-(4,7-dimethyl-2-oxo-2H-benzopyran-6-ylazo)-3-piperidin-1-yl-acrylonitrile (**3d-f**) respectively. The enaminonitrile derivatives (**3a-f**) on heating with acetic anhydride give the corresponding 5-(4,7-dimethyl-2-oxo-2H-benzopyran-6-ylazo)-2-methyl-6-morpholin-4-yl-2,3-dihydro-3H-pyrimidin-4-one and 5-(4,7-dimethyl-2-oxo-2H-benzopyran-6-ylazo)-2-methyl-6-piperidin-1-yl-2,3-dihydro-3H-pyrimidin-4-one (**4a-f**). The structures of the compounds (**2a-c**), (**3a-f**) and (**4a-f**) have been established on the basis of spectral and analytical data. All the above compounds have been screened for their antimicrobial activities and are found to possess significant antibacterial activities.


Keywords: 6-Aminocoumarin, enaminonitrile, pyrimidine, antimicrobial activity, diazotized.

Compounds incorporating benzopyrone structural units are reported to possess a wide range of biological activities¹. The 6-substituted coumarin derivatives have been reported to exhibit antibacterial and anti-fungal activities. Nitrogen mustards synthesized from 6-aminocoumarins exhibit carcinogenic activity². They are also known to possess antiviral³ activity and especially effective against HIV⁴. The schiff bases of 6-aminocoumarins are well-known for their wide range of pharmaceutical like antibacterial, and anti-fungal⁵ activities. The pyrimidine derivatives com-

prise a diverse and interesting group of drugs⁶. A comprehensive review concerning pyrimidines has been published by Brown⁷. Pyrimidines, in general are extremely important for their biological activities. Such as antiviral agents⁸, as selective cholecystokinin subtype 1 (CCK1) receptor antagonists⁹, and anti-inflammatory^{10,11}. The biological importance of pyrimidine derivatives and the 6-substituted coumarin has prompted to the synthesis coumarinyl azo pyrimidine derivatives, which may have some of the biological activity is of considerable interest.

Result and Discussion

6-Amino coumarin (**1a-c**) was diazotized and coupled with malononitrile to give 2-[(4,7-dimethyl-2-oxo-2H-benzopyran-6-yl)-hydrazone]-malononitrile (**2a-c**) (**Scheme I**). Structures of (**2a-c**) were confirmed on the basis of spectral and analytical data **Table I**. The IR spectrum of **2a** in KBr showed bands at 3182 cm⁻¹ for the N-H stretching, band at 2232 cm⁻¹ due to (C≡N) groups, 1743 cm⁻¹ for the carbonyl group etc. Its ¹H NMR spectrum in CDCl₃ showed the presence of a singlet at δ 2.50 for three protons of methyl group at C₄, a singlet at δ 2.52 for three protons of methyl group at C₇. A singlet appeared at δ 9.57 for the >NH proton which was D₂O exchangeable. The mass spectrum of **2a** showed molecular ion peak at *m/z* 266 along with other peaks at *m/z* 238, 210, 188, 173, 160, 145, 117 and 91 with base peak at *m/z* 77. 3-Amino-2-(4,7-dimethyl-2-oxo-2H-benzopyran-6-ylazo)-3-morpholin-4-yl-acrylonitrile (**3a-c**) and 3-amino-2-(4,7-dimethyl-2-oxo-2H-benzopyran-6-ylazo)-3-piperidin-1-yl-acrylonitrile (**3d-f**) were obtained by refluxing (**2a-c**) with morpholine and piperidine separately in dioxane solvent. The IR spectra of the compounds **3a** exhibited absorption bands in the region of 3435-3290 cm⁻¹ due to -NH₂ group, appearance of bands at 2187 cm⁻¹ due to (C≡N) group, 1717 cm⁻¹ for the carbonyl group etc. Its ¹H NMR spectrum in CDCl₃ showed a sharp singlet at δ 2.40 and 2.65 for the three protons each of the two methyl groups of C₄ and C₇ respectively, multiplet appeared at δ 3.78 for the four protons of the two methylene groups of -CH₂-N-CH₂- of the morpholine ring; another multiplet was observed at δ 3.89 for the four protons of the two

1a, 2a. R₁ = CH₃, R₂ = CH₃ 3a, 4a. R₁ = CH₃, R₂ = CH₃, X = O.
 1b, 2b. R₁ = H, R₂ = CH₃ 3b, 4b. R₁ = H, R₂ = CH₃, X = O.
 1c, 2c. R₁ = H, R₂ = H 3c, 4c. R₁ = H, R₂ = H, X = O.
 3d, 4d. R₁ = CH₃, R₂ = CH₃, X = CH₂
 3e, 4e. R₁ = H, R₂ = CH₃, X = CH₂.
 3f, 4f. R₁ = H, R₂ = H, X = CH₂.

Scheme I

Table I — Characterization data of compounds **2a-c**, **3a-f** and **4a-f**

Compd	Mol. Formula (Mol. Wt.)	m.p. °C	Yield (%)	{Required(%) (Found.)}		
				C	H	N
2a	C ₁₄ H ₁₀ N ₄ O ₂ (266.26)	212-15	81	63.15% (63.05)	3.79% (3.73)	21.04% (20.84)
2b	C ₁₃ H ₈ N ₄ O ₂ (252.23)	178-80	78	61.90% (61.79)	3.20% (3.39)	22.21% (22.10)
2c	C ₁₂ H ₆ N ₄ O ₂ (238.21)	165-67	83	60.51% (60.32)	2.54% (2.64)	23.52% (23.65)
3a	C ₁₈ H ₁₉ N ₅ O ₃ (353.38)	201-05	74	61.18% (61.37)	5.42% (5.24)	19.82% (19.66)
3b	C ₁₇ H ₁₇ N ₅ O ₃ (339.36)	162-64	69	60.17% (60.37)	5.05% (5.25)	20.64% (20.42)
3c	C ₁₆ H ₁₅ N ₅ O ₃ (325.33)	154-56	72	59.07% (59.37)	4.65% (4.84)	21.53% (21.33)
3d	C ₁₉ H ₂₁ N ₅ O ₂ (351.41)	178-81	67	64.94% (64.78)	6.02% (5.89)	19.93% (19.74)
3e	C ₁₈ H ₁₉ N ₅ O ₂ (337.38)	137-40	66	64.08% (64.22)	5.68% (5.56)	20.76% (20.69)
3f	C ₁₇ H ₁₇ N ₅ O ₂ (323.36)	133-36	72	63.15% (63.05)	5.30% (5.15)	21.66% (21.44)
4a	C ₂₀ H ₂₁ N ₅ O ₄ (395.42)	178-80	60	60.75% (60.88)	5.35% (5.20)	17.71% (17.56)
4b	C ₁₉ H ₁₉ N ₅ O ₄ (381.41)	171-73	61	59.84% (59.96)	5.02% (5.24)	18.36% (18.59)
4c	C ₁₈ H ₁₇ N ₅ O ₄ (367.37)	165-167	64	58.85% (58.60)	4.66% (4.44)	19.06% (19.02)
4d	C ₂₁ H ₂₃ N ₅ O ₃ (393.45)	180-82	65	64.11% (64.26)	5.89% (5.77)	17.80% (17.63)
4e	C ₂₀ H ₂₁ N ₅ O ₃ (379.42)	174-76	59	63.31% (63.62)	5.58% (5.44)	18.46% (18.54)
4f	C ₁₉ H ₁₉ N ₅ O ₃ (365.39)	165-66	54	62.46% (62.32)	5.24% (5.39)	19.17% (19.02)

methylene groups of -CH₂-O-CH₂- of the morpholine ring, a broad singlet at δ 5.62 integrating for two protons of -NH₂ group which is D₂O exchangeable. The ¹³C NMR spectrum showed signals at δ 17.93 for the methyl carbon at C₄, 18.71 for the carbon of the methyl group at C₇, 49.32 for the methylene carbons of -CH₂-N-CH₂- of the morpholine ring, 66.53 for the methylene carbons of -CH₂-O-CH₂- of the morpholine ring, 162.84 for the carbonyl of coumarin. The mass spectrum of **3a** showed molecular ion peak at *m/z* 353 along with other peaks at *m/z* 284, 266, 210, 188, 174, 160, 146, 145, 115, 91 and 65 with base peak at *m/z* 160. The enaminonitrile derivative (**3a-f**) was reacted with acetic anhydride to give the corresponding 5-(4,7-dimethyl-2-oxo-2H-benzopyran-6-ylazo)-2-methyl-6-morpholin-4-yl-2,3-dihydro-3H-pyrimidin-4-one and 5-(4,7-dimethyl-2-oxo-2H-benzopyran-6-ylazo)-2-methyl-6-piperidin-1-yl-2,3-dihydro-3H-pyrimidin-4-one (**4a-f**, Scheme I). The IR spectra of the compounds **4a** exhibited absorption band in the region of 3295 cm⁻¹ due to -NH

group, 1710 for the carbonyl group of coumarin and 1683 for the carbonyl group of pyrimidine, the disappearance of bands at 2187 cm⁻¹ of (C≡N) group also proved the product formation. Its ¹H NMR spectrum in CDCl₃ showed a sharp singlet at δ 2.20, 2.39 and 2.49 for the three protons each of the three methyl groups at C₄, C₇ and C₂ respectively, multiplet appeared at δ 3.76 for the four protons of the two methylene groups of -CH₂-N-CH₂- of the morpholine ring; another multiplet was observed at δ 3.93 for the four protons of the two methylene groups of -CH₂-O-CH₂- of the morpholine ring, a singlet at δ 8.85 integrating for >NH which is D₂O exchangeable. The mass spectrum of **4a** showed molecular ion peak at *m/z* 395 along with other peaks at *m/z* 377, 362, 326, 284, 239, 214, 188, 173, 160 and 117 with base peak at *m/z* 188.

Antimicrobial activity

All the synthesized compounds (**2a-c**), (**3a-f**) and (**4a-f**) were screened for their antibacterial activity

against *S. aureus*, *S. typhi* and *E. coli* (**Table II**) by the drug diffusion method¹². The zone of inhibition was measured in mm and was compared with standard drug. DMSO was used as a blank and Streptomycin was used as antibacterial standard. All the compounds were tested at 100 µg/mL and 250 µg/mL concentration.

From the antimicrobial screening of the compounds (**2a-c**), (**3a-f**) and (**4a-f**) it could observe that the introduction of morpholine and pyrimidine to an azo compound shows the comparable biological activity.

Experimental Section

General: Melting points were taken in open capillaries and are uncorrected. Purity of the compounds was checked on TLC. IR spectra (ν_{max} in cm^{-1}) were recorded on a Perkin Elmer FTIR; NMR (^1H and ^{13}C) on 300 MHz JEOL NMR AL300 using TMS as standard and CDCl_3 as a solvent; and mass spectra on a Shimadzu GC-MS QP-2010.

2-[(4,7-Dimethyl-2-oxo-2*H*-benzopyran-6-yl)-hydrazono]-malononitrile (**2a-c**). General Procedure.

A solution 6-amino coumarin (**1a-c**) (0.01 mole) in

conc. HCl (5 mL) and water (5 mL) was cooled to 0-5°C with stirring. Sodium nitrite (0.70 g, 0.01mole) in water (5 mL) was gradually added to the solution over a 15 min period at 0-5°C with stirring. The reaction mixture was stirred for further 30 min at 0-5°C, the solution was filtered to obtain a clear diazonium salt solution. The cold diazonium solution was added then drop wise to a well cooled and stirred mixture of the malononitrile (0.01 mole) and sodium acetate (2.0 g dissolved in 10 mL of 50% ethanol). The stirring was continued for further 2 hr after the addition at the same temperature. The product formed was filtered, washed with water, dried and recrystallized from ethanol to give (**2a-c**).

3-Amino-2-(4,7-dimethyl-2-oxo-2*H*-benzopyran-6-ylazo)-3-morpholin-4-yl-acrylonitrile and 3-amino-2-(4,7-dimethyl-2-oxo-2*H*-benzopyran-6-ylazo)-3-piperidin-1-yl-acrylonitrile (**3a-f**). General Procedure.

A solution of (**2a-c**) (0.01 mole) and morpholine or piperidine (2 mL) in dioxane (20 mL) was refluxed for 6 hr (TLC monitoring). After the completion of reaction, the excess of dioxane was recovered by distillation. The residue obtained was treated with cold water, the solid obtained was filtered, washed with excess of water, dried and recrystallized from ethanol to give (**3a-f**).

5-(4,7-Dimethyl-2-oxo-2*H*-benzopyran-6-ylazo)-2-methyl-6-morpholin-4-yl-2,3-dihydro-3*H*-pyrimidin-4-one and 5-(4,7-dimethyl-2-oxo-2*H*-benzopyran-6-ylazo)-2-methyl-6-piperidin-1-yl-2,3-dihydro-3*H*-pyrimidin-4-one (**4a-f**). General Procedure.

Compound (**3a-f**) (0.01 mole) was refluxed in 5 mL acetic anhydride for 3 hr. After cooling, the reaction mixture was poured into ice-water. The solid obtained was filtered, washed with water, dried and recrystallized from ethanol to give (**4a-f**).

Spectral data:

2a: IR (KBr): 3182 (-NH), 2232 (-CN), 1743 (>C=O), 1625, 1541, 1461 cm^{-1} . ^1H NMR: δ 2.50 (s, 3H, $\text{C}_4\text{-CH}_3$), 2.52 (s, 3H, $\text{C}_7\text{-CH}_3$), 6.36 (s, 1H, $\text{C}_3\text{-H}$), 7.25 (s, 1H, $\text{C}_8\text{-H}$), 7.71 (s, 1H, $\text{C}_5\text{-H}$), 9.57 (s, 1H, >NH, D_2O exchangeable). Mass: m/z (%) M^+ 266(31) 238(6), 210(5), 188(31), 173(25), 160(46), 145(31), 117(61), 91(100), 77(67).

2b: IR (KBr): 3184 (-NH), 2221 (-CN), 1737 (>C=O), 1625, 1544, 1477, 1261, 1127 cm^{-1} . ^1H

Table II — Antibacterial activity of compounds **2a-c**, **3a-f** and **4a-f**

Compd	Zone of inhibition in mm					
	<i>S. aureus</i>		<i>S. typhi</i>		<i>E. coli</i>	
	100 µg	250 µg	100 µg	250 µg	100 µg	250 µg
2a	10	11	14	15	14	15
2b	8	10	12	13	12	14
2c	7	9	8	10	9	11
3a	14	15	14	16	15	16
3b	12	13	14	15	14	15
3c	9	11	11	13	12	13
3d	13	14	15	16	16	17
3e	13	15	12	14	13	15
3f	11	12	13	14	12	14
4a	14	15	15	17	16	17
4b	12	13	13	14	13	15
4c	9	11	12	13	12	13
4d	15	16	14	15	15	16
4e	12	14	13	14	14	15
4f	11	13	12	14	12	13
Disc size: 6.35mm	Standard: Streptomycin		Control: DMSO			
Duration: 24 hr.	resistant (11mm/less) Sensitive (15 mm/more)		Intermediate (12-14 mm)			

NMR: δ 2.51 (s, 3H, C₇-CH₃), 6.46 (d, 1H, J = 9Hz, C₃-H), 7.23 (s, 1H, C₈-H), 7.64 (s, 1H, C₅-H), 7.69 (d, 1H, J = 9Hz, C₄-H), 9.52 (s, 1H, >NH, D₂O exchangeable).

2c: IR (KBr): 3193 (-NH), 2224 (-CN), 1715 (>C=O), 1620, 1549, 1469, 1145 cm⁻¹. ¹H NMR: δ 6.52 (d, 1H, J = 9Hz, C₃-H), 7.33-7.74 (m, 4H, coumarine moiety), 9.50 (s, 1H, >NH, D₂O exchangeable).

3a: IR (KBr): 3435, 3290 (-NH₂), 2187 (-CN), 1717 (>C=O), 1615, 1548, 1492, 1110 cm⁻¹. ¹H NMR: δ 2.40 (s, 3H, C₄-CH₃), 2.65 (s, 3H, C₇-CH₃), 3.78 (m, 4H, -CH₂-N-CH₂), 3.89 (m, 4H, -CH₂-O-CH₂), 6.23 (s, 1H, C₃-H), 7.18 (s, 1H, C₈-H), 7.41 (s, 1H, C₅-H), 5.62 (br, 2H, >NH₂, D₂O exchangeable). ¹³C NMR: δ 17.93 (C₄-CH₃), 18.71 (C₇-CH₃), 49.32 (-CH₂-N-CH₂-, morpholine ring), 66.53 (-CH₂-O-CH₂-, morpholine ring), 110.64, 111.32, 111.60, 113.96, 117.24, 118.10, 118.39, 138.57 (C₄), 151.18 (C_{8a}), 154.43 (C₂), 160.54 (C₃), 162.84 (C₂ >C=O). Mass: *m/z* (%) M⁺ 353(29) 284(8), 266(6), 210(9), 188(43), 174(6), 160(100), 146(35), 145(42), 115(53), 91(78), 65(80).

3b: IR (KBr): 3421, 3288 (-NH₂), 2180 (-CN), 1724 (>C=O), 1625, 1531, 1488, 1103 cm⁻¹. ¹H NMR: δ 2.66 (s, 3H, C₇-CH₃), 3.77 (m, 4H, -CH₂-N-CH₂), 3.89 (m, 4H, -CH₂-O-CH₂), 6.37 (d, 1H, J = 9Hz, C₃-H), 7.18 (s, 1H, C₈-H), 7.33 (s, 1H, C₅-H), 7.66 (d, 1H, J = 9Hz, C₄-H), 5.60 (br, 2H, >NH₂, D₂O exchangeable).

3c: IR (KBr): 3427, 3284 (-NH₂), 2177 (-CN), 1710 (>C=O), 1618, 1541, 1478, 1115 cm⁻¹. ¹H NMR: δ 3.77 (m, 4H, -CH₂-N-CH₂), 3.88 (m, 4H, -CH₂-O-CH₂), 6.40 (d, 1H, J = 9Hz, C₃-H), 7.26-7.68 (m, 4H, coumarine moiety), 5.59 (br, 2H, >NH₂, D₂O exchangeable).

3d: IR (KBr): 3437, 3301 (-NH₂), 2184 (-CN), 1714 (>C=O), 1615, 1537, 1478, 1116 cm⁻¹. ¹H NMR: δ 2.39 (s, 3H, C₄-CH₃), 2.63 (s, 3H, C₇-CH₃), 3.71 (m, 4H, -CH₂-N-CH₂), 1.79-1.65 (m, 6H, piperydinylo moiety), 6.22 (s, 1H, C₃-H), 7.17 (s, 1H, C₈-H), 7.41 (s, 1H, C₅-H), 5.69 (br, 2H, >NH₂, D₂O exchangeable).

3e: IR (KBr): 3424, 3309 (-NH₂), 2183(-CN), 1723 (>C=O), 1619, 1555, 1493, 1365, 1219, 1144 cm⁻¹. ¹H NMR: δ 2.65 (s, 3H, C₇-CH₃), 3.71 (m, 4H, -CH₂-N-CH₂), 1.78-1.65 (m, 6H, piperydinylo moiety), 6.35 (d, 1H, J = 9Hz, C₃-H), 7.15 (s, 1H, C₈-H), 7.27 (s, 1H, C₅-H), 7.66 (d, 1H, J = 9Hz, C₄-H), 5.68 (br, 2H,

>NH₂, D₂O exchangeable). Mass: *m/z* (%) M⁺ 337(6) 301(15), 270(9), 252(16), 175(45), 160(26), 146(29), 131(17), 112(59), 84(100), 69(32).

3f: IR (KBr): 3430, 3291 (-NH₂), 2187 (-CN), 1737 (>C=O), 1625, 1554, 1499, 1129 cm⁻¹. ¹H NMR: δ 3.71 (m, 4H, -CH₂-N-CH₂), 1.78-1.64 (m, 6H, piperydinylo moiety), 6.40 (d, 1H, J = 9Hz, C₃-H), 7.26-7.66 (m, 4H, coumarine moiety), 5.67 (br, 2H, >NH₂, D₂O exchangeable).

4a: IR (KBr): 3295 (-NH) 1710 (>C=O), 1683 (>C=O), 1623, 1519, 1445, 1383, 1195 cm⁻¹. ¹H NMR: δ 2.20 (s, 3H, C₄-CH₃), 2.39 (s, 3H, C₇-CH₃), 2.49 (s, 3H, C₂-CH₃), 3.76 (m, 4H, -CH₂-N-CH₂), 3.93 (m, 4H, -CH₂-O-CH₂), 6.33 (s, 1H, C₃-H), 7.20 (s, 1H, C₈-H), 7.43 (s, 1H, C₅-H), 8.85 (s, 1H, >NH, D₂O exchangeable). Mass: *m/z* (%) M⁺ 395 (10), 377 (14), 362 (19), 326 (39), 284 (68), 239 (32), 214 (19), 188 (100), 173 (66), 160 (82), 117(53).

4b: IR (KBr): 3288 (-NH), 1716 (>C=O), 1686 (>C=O), 1626, 1525, 1449, 1377, 1180 cm⁻¹. ¹H NMR: δ 2.38 (s, 3H, C₇-CH₃), 2.51(s, 3H, C₂-CH₃), 3.77 (m, 4H, -CH₂-N-CH₂), 3.90 (m, 4H, -CH₂-O-CH₂), 6.43 (d, 1H, J = 9Hz, C₃-H), 7.26 (s, 1H, C₈-H), 7.36 (s, 1H, C₅-H), 7.64 (d, 1H, J = 9Hz, C₄-H), 8.85 (s, 1H, >NH, D₂O exchangeable).

4c: IR (KBr): 3296 (-NH), 1700 (>C=O), 1676 (>C=O), 1619, 1512, 1440, 1373, 1169 cm⁻¹. ¹H NMR: δ 2.52 (s, 3H, C₂-CH₃), 3.78 (m, 4H, -CH₂-N-CH₂), 3.90 (m, 4H, -CH₂-O-CH₂), 6.49 (d, 1H, J = 9Hz, C₃-H), 7.34-7.74 (m, 4H, coumarine moiety), 8.85 (s, 1H, >NH, D₂O exchangeable).

4d: IR (KBr): 3305 (-NH), 1724 (>C=O), 1673 (>C=O), 1616, 1509, 1425, 1392, 11990 cm⁻¹. ¹H NMR: δ 2.19 (s, 3H, C₄-CH₃), 2.39 (s, 3H, C₇-CH₃), 2.49 (s, 3H, C₂-CH₃), 3.69 (m, 4H, -CH₂-N-CH₂), 1.76-1.62(m, 6H, piperydinylo moiety), 6.31(s, 1H, C₃-H), 7.19 (s, 1H, C₈-H), 7.40 (s, 1H, C₅-H), 8.88 (s, 1H, >NH, D₂O exchangeable).

4e: IR (KBr): 3314 (-NH), 1720 (>C=O), 1669 (>C=O), 1629, 1534, 1442, 1391, 1175 cm⁻¹. ¹H NMR: δ 2.38 (s, 3H, C₇-CH₃), 2.51 (s, 3H, C₂-CH₃), 3.68 (m, 4H, -CH₂-N-CH₂), 1.76-1.62 (m, 6H, piperydinylo moiety), 6.43 (d, 1H, J = 9Hz, C₃-H), 7.25 (s, 1H, C₈-H), 7.36 (s, 1H, C₅-H), 7.64 (d, 1H, J = 9Hz, C₄-H), 8.89 (s, 1H, >NH, D₂O exchangeable).

4f: IR (KBr): 3310 (-NH), 1718 (>C=O), 1688 (>C=O), 1629, 1512, 1461, 1378, 1188 cm⁻¹. ¹H NMR: δ 2.53 (s, 3H, C₂-CH₃), 3.67 (m, 4H, -CH₂-N-CH₂), 1.76-1.62 (m, 6H, piperydinylo moiety), 6.49 (d, 1H, J = 9Hz, C₃-H), 7.33-7.73 (m, 4H, coumarine

moiety), 8.90 (s, 1H, >NH, D₂O exchangeable).

Acknowledgement

Authors are thankful to IIT, Mumbai for elemental analysis, Haffkine Institute Parel, Mumbai for biological testing.

References

- 1 Ghosh C.K, *J Indian Chem Soc*, 67, **1990**, 5.
- 2 Schuda P F, *Top Org Chem*, 91, **1980**, 75.
- 3 Kun E & Aurelian L, *US Pat* 412 783, **1991**; *Chem Abstr*, 115, **1991**, 92071t.
- 4 Kun E (*Octamer Inc USA*) *PCT Int App*, WO9851, 307.
- 5 Mulwad V V & Shirodkar J M, *Indian J Heterocyclic Chem*, 11, **2002**, 199.
- 6 Chabner B A, Wilson W & Supko J, *Pharmacology & Toxicity of Antineoplastic Drugs* in *Williams Hematology* ed-
ited by E Beutler, M A Lichtman, B S Coller, T J Kipps & U Seligsohn, 6th Edn, (McGraw-Hill, New York) **2001**, pp. 185.
- 7 Brown D J, Pyrimidines and their Benzo derivatives in *Comprehensive Heterocyclic Chemistry, The Structure, Reactions, Synthesis & Uses of Heterocyclic Compounds*, edited by A R Katritzky & C W Rees (Prgamon Press, Oxford) **1984**, pp. 57.
- 8 Nasr M N & Gineinah M M, *Arch. Pharm*. 335, **2002**, 289.
- 9 Bartolome-Nebreda J M, Garcia-Lopez M T & Gonzalez-Muniz R, *J Med Chem*, 24, **2001**, 4196.
- 10 Santagati A, Granata G, Santagati M, Cutuli V, Mangano M G & Caruso A, *Arznei-Forsch* 52, **2002**, 448.
- 11 Unangst C P, Conner D T, Kostlan C R & Shrum G P, *J Heterocycl Chem*, 32, **1995**, 1197
- 12 Frankle S, Reitman S & Sonnenwirth A C; *Gradwohl's Clinical Laboratory Method and Diagnosis*, 7th Edn, Vol 2, (C V Mosby Co, Germany), **1970**, 1406.